Muffler Modeling Options to Simulate Your Exhaust System

Steven Patterson

HThermoAnalytics

Agenda

- Introduction to Exhaust Streams
- Motivation for Muffler Modeling
- Muffler Chambers in TAITherm
- Comparison of 3 TAITherm muffler models
 - Using only simple chamber type
 - Using advanced chamber types
 - Using interior geometry and custom setup

Exhaust Simulation Methods

Assigned Temperatures Constant temperature Interpolated Part from Thermocouples Typically Low resolution

1D or Fluid Streams

Calculated Temperatures **Higher resolution** General convection calculations

Manual setup of many parts

Exhaust Streams

Calculated Temperatures Higher resolution Exhaust specific convection Easy setup Run complex geometry

or imperfect mesh

Calculated Temperatures **Highest Resolution** Requires fine mesh to resolve heat transfer

3D CFD

Needs detailed geometry for all parts Requires input of heat sources

Exhaust Simulation Methods

Assigned Temperatures Constant temperature Interpolated Part from Thermocouples Typically Low resolution

1D or Fluid Streams

Calculated Temperatures Higher resolution General convection calculations

Manual setup of many parts

Exhaust Streams

Calculated Temperatures Higher resolution Exhaust specific convection Easy setup Run complex geometry or imperfect mesh

3D CFD

Calculated Temperatures Highest Resolution Requires fine mesh to resolve heat transfer

Needs detailed geometry for all parts Requires input of

heat sources

Exhaust Streams

- Thermal prediction of exhaust components is critical
 - Predictions must be fast, accurate & support transient analysis
- Exhaust Streams
 - 1D Convection from 3D Geometry
 - Component Types
 - Catalytic Converters
 - Turbochargers
 - Mufflers
 - Pipes
 - Custom
 - Higher Accuracy
 - Geometric convection effects
 - High resolution 1D networks
 - Increased detail for active components
 - Simplified Setup
 - Engine data integrated with Exhaust Stream
 - Multiple sub-streams for complex exhaust systems
 - Branching & Merging flows

Fast, Simple Muffler Modeling

- There are many types of muffler styles and designs
- Thermal analysts building underbody models have access to different levels of interior detail
- Different modeling methods are needed for different situations

Muffler Chamber Types in TAITherm

- Simple Chamber
- Uninsulated Pipe
- Insulated Pipe
- Open Chamber

Muffler Chamber Types: Simple Chamber

- Chamber type introduced in version 12.4
- Retained for backward compatibility
- Does not support internal geometry

Muffler Chamber Types: Uninsulated Pipe

- No internal geometry
- Implicitly models a perforated pipe passing through the chamber
- User defines fraction of flow exchange between the pipe and the chamber

Muffler Chamber Types: Insulated Pipe

- No internal geometry
- Implicitly models a perforated pipe passing through the chamber and the chamber filled with porous insulation
- User defines fraction of flow exchange between the pipe and the chamber

Muffler Chamber Types: Open

- No internal geometry
- Models flow in a fully open chamber
- Allows convection augmentation for an impingement point

Example Models

Example Model Variations

- We will now demonstrate 3 exhaust system models using different methods for the muffler
 - Using 3 simple chambers
 - Using <un>insulated chambers, and open chamber, and impingement
 - Using the interior geometry and fluid parts

13

Model 1: Simple Muffler Chambers

recent

12222-27-27

- No interior geometry
- 3 Simple Chambers

D D	Name	Face
Simple Chamber		
≝ Simple Chamber ⊞ Simple Chamber		

14

R R R

-2-3----

- Include geometry for baffles
- 3 Chambers

Cur

Βοι

5 Chambers	
 Impingement on back face 	
rent Component Details	
Inding Parts	
A Name Face Open Chamber Uninsulated Pipe Uninsulated Pipe	

0

22222

TERESTER

- Include geometry for baffles
- Includes geometry for interior pipes
- Uses Fluid Parts for convection on muffler

Walls Exhaust Components

Name	Туре
manifold	Pipe 🚺
turbo	Turbocharger
pipesToSilencer	Pipe
cat	Catalytic Converter
silencer	Muffler
pipes_silencerIntoMufflers	Pipe
pipes_lhs_tail1	Pipe
pipes_lhs_tail2	Pipe
pipes_rhs_tail1	Pipe
pipes_rhs_tail2	Pipe

Model Setup

Defined 3 Chambers

Properties	Components	Stream Points	Sub-Streams	Distribu 🔍		
Exhaust Components						
Name		/	Туре	_		
pipes_rhs_ta	il1		Pipe			
pipes_rhs_ta	il2		Pipe			
muffler_rhs			Muffler	<u> </u>		
muffler_lhs			Muffler			
-Current Con	ponent Details -					
Bounding P	arts			•		
ID	Δ	Name		Face 📤		
🚊 Open C	hamber					
840		chamber_3_rhs		Back		
858		baffle_2_rhs		Back		
859		muffler_back_end_rh	S	Back		
Uninsul	ated Pipe					
839		muffler_front_end_rhs	3	Back		
842		baffle_1_rhs		Front		
854		chamber_1_rhs		Back		
	ated Pipe	h-M- 4 -h-		De als		
842		pame_1_rns		Back		
855		cnamper_2_rns		Back		
000		Dame Z ms				
Current Su	ub-Component D	etails				

Perforation % 80

- Chamber 1
- Uninsulated Pipe

19

- Chamber 2
- Uninsulated Pipe

- Chamber 3
- Open Chamber

21

- Chamber 3
- Impingement

)	│ Name	Face
Open Cham 840 858	ber chamber_3_rhs baffle_2_rhs	Back Back
259 Current Sub-Co	omponent Details	Back
859 Current Sub-Co	omponent Details	Back

22

Model 3: Full Interior

Model Setup

Library Convection

- Muffler is not part of "Exhaust Stream" in this model
- Use Library Convection with flow from the Fluid Parts

TAITherm Library Convection				\times
Automatic Automatically mixed natural and forced convection				
Fluid Temperature Value Curve Routine Fluid From Altitude	(°C) 1006: ex_muffler_rhs_aft ▼	Forced Length (mm) Length (mm) Width (mm) Height (mm)	223.2 87.4872 223.2 143.943	
Flow Speed (L/min Velocity Value Velocity Curve Volume Flow V Volume Flow C Mass Flow Value Mass Flow Curve Flow from Fluid	alue urve ue ve	Set to P Flow Area (mm²) 30000 Multiplier (CAF) 1.0	'art Sizes	
	ОК	Cancel		

Results

Muffler Comparison

Temperatures are different when baffles are included

Muffler Comparison

Temperatures are different when baffles are included

Muffler Back

	Part 864 muffler_end_back	Part 864 muffler_end_back
	(front max)	(front avg)
Simple Chamber	275.3	274.7
Open Chamber with		
Impingement	276.3	224.5
Custom with Interior		
Pipes	279.1	228.9

Simple Chambers

37

Questions?

ThermoAnalytics

Technical Support Site

- https://support.thermoanalytics.com
 - Search FAQ
 - Download Tutorials
 - See Examples
 - Watch Webinar Recordings
 - Request Support
 - Securely upload large files
 - View support requests
 - Or email: <u>techsupport@thermoanalytics.com</u>
 - Download Software
 - Post Feature Requests
 - Vote or comment on posted requests

39